Metrex has been Protecting People across healthcare for over 20 years.

Evidence-based prevention of infectious diseases in schools

-Part I: Fundamentals of infections in schools -Part II: The importance of surface hygiene

Liu, Yatao Ph.D. Senior Manager, Global Medical & Clinical Affairs Metrex Research Email: Yatao Llu@metrex.com

Overview of infectious diseases at school

- ✓ Fundamental principles of infectious diseases
 - Basic and clinical microbiology
 - Microbial pathogenesis
 - Common pathogens and transmission pathways
- Evidence-based role of surface disinfection
 - Hand hygiene
 - Surface disinfection

Overview of infectious diseases at school

- Infectious diseases account for millions of school days lost each year for kindergarten through 12th-grade public school students in the United States¹
- 40% of children aged 5–17 years missed 3 or more school days in the past year because of illness or injury²
- Nearly 22 million school days are lost each year due to colds alone³
- 38 million school days are lost each year due to the influenza virus³
- 1. CDC. Infectious diseases at school
- 2. CDC. Summary Health Statistics for U.S. Children: National Health Interview Survey, 2007.
- 3. CDC. Vital Health and Statistics. Current Estimates from the National Health Interview Survey, 1996.

Basic and clinical microbiology

Classification

- Virus (Smallest infectious agent-DNA or RNA in a protein coat)
- Bacteria (single-cell prokaryotes)
- Fungi (Eukaryotic organisms with cell walls that lack photosynthetic capability)
 - Yeast
 - o Mold
- Prions (Infectious agent composed of protein)
- Parasites
 - Bedbugs, lice
 - Protozoa (unicellular, free-living eukaryotic organisms)

Scientific Names of Microbial Species

Species name	Source of Genus Name	Source of Specific Epithet
Klebsiella pneumoniae	Honors Edwin Klebs	The disease
Escherichia coli	Honors Theodor Escherich	Derived from the colon, an inhabitant in gastro- intestinal tract
Salmonella typhimurium	Honors Daniel Salmon	Stupor (<i>typh</i> -) in mice (<i>muri</i> -)
Staphylococcus aureus	Greek staphyle, <i>meaning</i> a bunch of grapes, and kokkos, <i>meaning</i> berry	Gold-colored (aureus) colonies

Genus name: May be descriptive or honor a scientist.

The species name includes the genus as well as the specific epithet.

- Italicized or underlined
- Genus name is capitalized and may be abbreviated
- A genus name may be used alone to indicate a genus group; a species name is never used alone eg: *Bacillus subtilis*
 - B. subtilis

Culprits of Infectious Diseases

Culprits of Infectious Diseases

Teresa Cardoso, et. al. *BMC Infectious Diseases* 2012, **12**:375 doi:10.1186/1471-2334-12-375 Cattaneo *et. al.* **Nature Reviews Microbiology** 6, 529-540 (July 2008) | doi:10.1038/nrmicro1927

Culprits of Infectious Diseases

- Virus size
 - 17 nm 3000 nm diameter
- Basic shape
 - **Rod-like**
 - "Spherical"
- **Protective Shell Capsid**
 - Made of many identical protein ____ subunits
 - Symmetrically organized
 - 50% of weight
 - **Enveloped or non-enveloped** _
- Genomic material
 - **DNA or RNA**
 - Single- or double-stranded

Ebola

Measles virus

Norovirus

Influenza

Jonathan King, et al. Introduction to Virus Structure. MIT Tutorial. 2008

Microbial Resistance Profile to Disinfectants and Sterilants More resistant

Peptidoglycan

Prions

Endospores of bacteria

Mycobacteria

Cysts of protozoa

Vegetative protozoa

Gram-negative bacteria

Fungi, including most fungal spores

Viruses without envelopes

Gram-positive bacteria

Viruses with lipid envelopes

Less resistant

Reference: Gerald E. McDonnell.

"Antisepsis, Disinfection, and Sterilization: Types, Action, and Resistance" American Society for Microbiology (ASM)Press, Washington, D.C., 2007

Basic and clinical microbiology

- Techniques used to identify microbes
 - Direct on microbes
 - Biochemistry
 - Gram staining, acid-fast staining
 - Culture (Growth media, incubation parameters)
 - Differential testing (biochemical responses, carbohydrate fermentation, enzyme testing)
 - Antigen detection (ELISA, serological testing, latex agglutination, MIP)

Protecting People

Specific color reactions of microorganisms on CHROMagar Orientation. 1, *P. mirabilis*; 2, *E. faecalis*; 3, *K. pneumoniae*; 4, *P. aeruginosa*; 5, *E. coli*; 6, *S. aureus*.

Samra Z et al. J. Clin. Microbiol. 1998;36:990-994

Chromogenic media

-Contains chromogenic substrate such as ONPG, X-Gal, X-Glu

- -The substrate can only be metabolized by certain enzymes
- -The enzymes are specific to target microbes
- -Direct observation of a distinct color change in the medium

Overview of Microbial Diagnostics

Liu, Y., et al. JACs 132(28), 9663-9671, 2010.

Surface based hybridization

Surface hybridization based, e.g. microarray

DNA/RNA hybridization based molecular diagnostics

Liu, Y. et al., Analytical Biochemistry. Charge-neutral morpholino microarrays for nucleic acid analysis. 2013, 434 (2) 207-214

Infection elements

Source: CDC

Microbial pathogenesis

Pathogenicity

Ability of a microorganism to cause disease by overcoming the defenses of a host

➢ Virulence

The degree or extent of pathogenicity

> Transmission

- Direct contact: close physical contact
- Indirect contact: transmission by fomites
- Droplet transmission: coughing or sneezing
- Vehicle transmission: via a medium (water, food, air, etc.)

http://www.sciencephoto.com/

Portals of Entry

➢ Pathogens

- Must gain access to host
- Adhere to host tissue
- Penetrate or evade host defenses
- Damage host tissue

Portals of Entry

Portal of Entry

Routes microorganisms can penetrate the body

- 1- mucous membranes
- 2- skin
- 3- parenteral route

Mucous membranes

- Respiratory tract
 - Easiest and most frequent route of infection
 - Inhaled through nose or oral cavity
 - Duct particles, moisture droplets
 - Common cold, pneumonia, tuberculosis, influenza, smallpox and measles

Mucous membrane

- Gastrointestinal route
 - In food or water
 - Contaminated fingers
 - Most are inactivated by stomach acid, enzymes
 - Norovirus, Salmonella, hepatitis A, cholera

Mucous membrane

- Genitourinary tract
 - Contracted sexually
 - Intact or broken mucous membranes
 - STD (sexually transmitted diseases/infections)
 - HIV, genital warts, genital herpes, syphilis, and gonorrhea

Skin

- Unbroken skin barrier to microorganisms
- Abscesses, burns, wounds, bites
- A reservoir

Some microbes must enter via preferred route to cause disease

- Streptococcus pneumoniae
- if inhaled can cause pneumonia
- if enters the G.I. Tract, no disease
- □ Salmonella typhi
- if enters the G.I. Tract can cause Typhoid Fever
- if on skin, no disease
- Some microbes may cause disease with many different route of entry
 - Pseudomonas aeruginosa

- Measles is a highly contagious virus that lives in the nose and throat mucus of an infected person.
- It can spread to others through coughing and sneezing.
- Also, measles virus can live for up to two hours on a surface or in an airspace where the infected person coughed or sneezed.
- If other people breathe the contaminated air or touch the infected surface, then touch their eyes, noses, or mouths, they can become infected.
- Measles is so contagious that if one person has it, 90% of the people close to that person who are not immune will also become infected.
- Infected people can spread measles to others from four days before to four days after the rash appears.
- > Measles is a disease of humans; measles virus is not spread by any other animal species.

Reference: CDC. Measles.

Adherence/Attachment

Specific adherence	Non-specific adherence
Ligand-receptor interactions	 Liftshitz-van der Waals Electrostatic interactions Lewis acid/base interactions Hydrophobic/lipophilic-mediated adhesion Hydrophobic structure on microbial cell envelope Lipophilic area on host cell membrane

Adherence/Attachment

		Microbial adhesion	Host cell receptor	
Bacteria	Fimbrial	Uropahogenic <i>E coli</i> P pili (fimbriae)	Epithelial cells glycolipid receptor globobiose	
	Afimbrial	Staphylococcus aureus fibronectin binding protein	Epithelial, endothelial, fibroblastic cells fibronectin receptor integrin	
SN.		<i>Norovirus</i> P domain of the capsids	Epithelial cells (food, direct contact, fomites) human histo-blood group antigens (HBGAs)	
	Vir	Influenza hemagglutinin (H) protein	Upper respiratory tract Sialic acid on host membrances	
	RNA Genome	OPE2 OPE3		

Hemagglutinin: >18 subtypes

► **Neuraminidase**: > 11 subtypes

Bok, Karin, et al. The New England Journal of Medicine, 2012, 367: 2126-2132

Common infections and pathogens in schools

Infection category	Examples		Pathogens
Stomach & Intestinal Infections	Stomach flu vs. food poisoning	Diarrhea	Salmonella, Norovirus
Lung & Respiratory infections	Infection vs. asthma (inflammation of the airways)	Cold; flu	Rhinovirus, coronavirus, RSV; Influenza A, B; Measles viruses
Skin Infections & Rashes		Scarlet fever (strep throat with a rash)	Streptococcus pyogenes
Eye Infections		Conjunctivitis (pinkeye)	Viruses or bacteria Staphylococcus, Pseudomonas
Ear Infections		Middle Ear Infections	Streptococcus, Respiratory syncytial virus (RSV) Influenza

http://kidshealth.org/parent/infections/

Healthwise; Mayo Foundation for Medical Education and Research

Antimicrobial Therapy

Goal: Seek to suppress or kill pathogenic microorganisms with minimal toxicity and /or side effects to the patient.

✓ Overview of infectious diseases at school

- ✓ Fundamental principles of infectious diseases
 - Basic and clinical microbiology
 - Microbial pathogenesis
 - Common pathogens and transmission pathways
- Evidence-based role of surface disinfection
 - Hand hygiene
 - Surface disinfection

Schools inherently foster the transmission of infections from person to person because they are a group setting in which people are in close contact and share supplies and equipment.

In order to cut the transmission pathways, good practices include:

- Encouraging sick students and staff to stay home and seek medical attention for severe illness.
- Facilitating hand hygiene by supplying soap and paper towels and teaching good hand hygiene practices.
- Being vigilant about cleaning and disinfecting classroom materials and surfaces.
- Providing messages in daily announcements about preventing infectious disease.
- Adopting healthy practices such as safe handling of food and use of standard precautions when handling body fluids and excretions.
- Encouraging students and staff to get annual influenza vaccinations, measles vaccine.

http://www.cdc.gov/healthyyouth/infectious/

Professionally trusted brand

Questions?

Netrex Protecting People

Thank you!